

Cefpodoxime-proxetil hydrolysis and food effects in the intestinal lumen before absorption: in vitro comparison of rabbit and human material

Sylvie Crauste-Manciet ^a, Marie-Odile Decroix ^{a,*}, Robert Farinotti ^b,
Jean-Claude Chaumeil ^a

^a Laboratoire de Pharmacotechnie et Dermopharmacie, Faculté des Sciences Pharmaceutiques et Biologiques, Paris V,
4 av de l'Observatoire, 75006 Paris, France

^b Service de Pharmacie Clinique et des Biomateriaux, Hopital Bichat Claude Bernard, 46 rue Henri Huchard, 75018 Paris, France

Received 18 April 1997; received in revised form 30 June 1997; accepted 15 July 1997

Abstract

The luminal and mucosal deesterification of the prodrug ester cefpodoxime-proxetil was studied in human duodenal washings in vitro. Enzymatic hydrolysis of the ester, releasing the active third generation cephalosporin, was observed in luminal washing in the same way as it had previously been observed in the rabbit. Eserine and PMSF and $HgCl_2$ were potent inhibitors of cefpodoxime-proxetil hydrolysis in luminal washing, suggesting the participation of a cholinesterase in the hydrolysis of cefpodoxime-proxetil. These results are in agreement with our previous findings performed in the rabbit. Moreover, cefpodoxime-proxetil directly decreases the acetylcholinesterase activity when tested by a specific enzymatic method. These observations support the hypothesis that the partial oral bioavailability of cefpodoxime-proxetil results from hydrolysis by luminal cholinesterases. In vitro experiments run with rabbit duodenal washing with food components were compared with the pharmacokinetics of cefpodoxime-proxetil in humans. Amino acids, trace elements and vitamins were potent inhibitors for cefpodoxime-proxetil hydrolysis in duodenal washings. Otherwise, lipids (LTC and mixed LCT/MCT) did not interact. In the human, cefpodoxime-proxetil bioavailability is significantly enhanced when tablets are administered with food. The correlation found between animal results and human results in vitro for prospective investigation of a new prodrug ester could be very useful. An in vitro hydrolysis in intestinal animal washings could allow the potentially degraded condition and the food effect of the luminal tract to be assessed before absorption. © 1997 Elsevier Science B.V.

Keywords: Absorption; Cefpodoxime-proxetil; Human duodenal washing; Cholinesterase; Amino acids; Trace elements; Vitamins; Lipid

* Corresponding author. Tel.: +33 1 53739583; fax: +33 1 43290062.

1. Introduction

Cefpodoxime-proxetil is an orally absorbed broad spectrum third generation cephalosporin ester. This prodrug ester is deesterified in vivo into its active metabolite cefpodoxime. In humans, the absolute bioavailability of cefpodoxime-proxetil administered as a 100 mg tablet is about 50% (Borin, 1991). Moreover, in the faeces, cefpodoxime-proxetil accounted for less than 0.5% of the administered dose, most of it being recovered as free cefpodoxime. This suggests that a degradation of the prodrug ester occurs in the intestinal lumen.

The degradation of cefpodoxime-proxetil was previously studied in rabbit duodenal washings (Crauste-Manciet et al., 1997). The rabbit was selected as a model because of its human similarity in activity of intestinal esterase which hydrolyze the ester-type drugs (Inoue et al., 1979a). In our previous study performed in vitro in the rabbit we observed a hydrolysis of the ester, leading to the release of free cefpodoxime. This hydrolysis is clearly related to an enzymatic activity since we did not observe any spontaneous hydrolysis at temperatures as high as 50°C and pH values in the range 6–8. Enzymatic activity was high in the luminal washing and was inhibited both by diisopropylfluorophosphate (DFP) and eserine. Therefore, this enzyme can be classified as a B esterase according to Aldridge's classification (Aldridge, 1953) and a cholinesterase according to Walker and Mackness, 1983.

The aim of the present work was to check in vitro in human duodenal washings that a similar cefpodoxime hydrolysis occurred and to investigate in vitro the impact of food on cefpodoxime-proxetil bioavailability. In human, cefpodoxime-proxetil bioavailability was found to be enhanced by food (Hughes et al., 1989; Borin and Forbes, 1995; Borin et al., 1995a,b). The objective of the present work was to correlate the influence of nutrients such as lipids, amino acids, trace elements and vitamins on the intestinal esterase activity in vitro.

2. Materials and methods

2.1. Materials

Cefpodoxime-proxetil was kindly provided by Roussel Uclaf, France. Cefuroxime-axetil, eserine, phenylmethylsulfonyl fluoride (PMSF), acetylthiocholine, acetylcholinesterase from the electric eel and 5,5'-dithio-bis(2-nitrobenzoic acid (DTNB) were purchased from Sigma (La Verpillière, France). Injectable macronutrients used for competition were the long chain triglycerides (200 g/l) emulsion, IVELIP® 20% (Clintec Nutrition Clinique, Sèvres, France). The mixed medium chain triglycerides (100 g/l) and long chain triglycerides (100 g/l) emulsion, MEDIALIPIDE® 20% (B. Braun Medical, Boulogne, France) and a mixed amino acids injectable solution, VAMINE®, (Kabi Pharmacia, St. Quentin en Yvelines, France). The amino acids composition is given in Table 1a. Injectable micronutrients as a trace element mixture, were also tested, namely, NONAN® (Aguettant, Lyon, France) and mixed hydrosoluble liposoluble vitamins, CERNEVIT® (Clintec Nutrition Clinique). Trace elements and vitamin compositions are given in Table 1b/Table 1c, respectively. All other reagents were of the highest grade available.

2.2. Methods

2.2.1. Human intestinal washings

Human duodenal washing samples were obtained from overnight fasted healthy volunteers in accordance with the Helsinki Declaration. 5 ml Duodenal washings were collected by tube from 6 male volunteers. The samples collected were spun down at 3800 × g for 10 min to remove particulate material, pooled and frozen at –22°C.

2.2.2. Rabbit intestinal washings

Male New-Zealand rabbits weighing 2.5–3 kg were fasted overnight before being sacrificed by i.v. injection of 2 ml/kg sodium pentobarbital. After an abdominal mid-line incision, the small intestine was exposed and a 20 cm segment be-

Table 1
Composition of Vamine®, Nonan® and Cernevิต®

a: Amino acids composition of Vamine®	
Amino acids	Concentration (g/l)
L-Alanine	3.8
L-Arginine	4.2
L-Aspartic acid	5.2
L-Cysteine	1.7
L-Phenylalanine	7.0
L-Glutamic acid	11.5
Glycine	2.7
L-Histidine	3.1
L-Isoleucine	5.0
L-Leucine	6.7
L-Lysine	5.0
L-Methionine	2.4
L-Proline	10.3
L-Serine	9.6
L-Threonine	3.8
L-Tryptophane	1.3
L-Tyrosine	0.6
L-Valine	5.5
b: Trace element composition of Nonan®	
Trace elements	Concentration
Fe ²⁺	0.450 mM
Cu ²⁺	0.175 mM
Mn ²⁺	0.450 mM
Zn ²⁺	1.525 mM
F ²⁺	1.9 mM
Co ²⁺	0.625 μM
I ²⁺	0.300 μM
Se ²⁺	12.675 μM
Mo ²⁺	6.500 μM
c: Vitamin composition of Cernevิต®	
Vitamins	Concentration
Retinol	700 000 I.U./l
Cholecalciferol	44 000 I.U./l
Alphatocopherol	2240 I.U./l
Ascorbic acid	25 g/l
Thiamine	0.702 g/l
Riboflavin	0.828 g/l
Pyridoxine	0.906 g/l
Cyanocobalamin	0.0012 g/l
Folic acid	0.0828 g/l
Biotine	0.0138 g/l
Nicotinamide	9.2 g/l
Panthotenic acid	3.45 g/l

The influence of nutrients on the cefpodoxime-proxetil hydrolysis was performed in the rabbit. Qualitative and quantitative composition of the mixtures used are: a, the amino acid mixture; b, the trace element mixture; c, the vitamin mixture.

ginning 5 cm distal to the pylorus was ligatured at both ends. The segment was filled with 5 ml washing buffer (10 mM Hepes buffer pH 7, 300 mM mannitol) which was left inside for 10 min. The intestine was then evacuated, the washing was spun down at 3800 × g for 10 min to remove particulate material, aliquoted and frozen at –22°C.

2.2.3. Assay of cefpodoxime-proxetil esterase activity

The enzymatic preparation (5 μg protein) was preincubated at 37°C for 5 min in 200 μl of 10 mM Hepes buffer pH 7, 300 mM mannitol. The reaction was started by the addition of 50 μl of cefpodoxime-proxetil (final concentration of 100 μM). After 30 min incubation, the reaction was stopped by the addition of trifluoroacetic acid (TFA) and the samples were centrifuged at 10 000 × g for 15 min and the amount of cefpodoxime released was measured by HPLC analysis of the supernatant.

The effect of eserine, paramethyl sulfoxide (PMSF), on the hydrolysis of cefpodoxime-proxetil in the human intestinal washings was measured by preincubating the enzymatic preparation with the above mentioned compound for 15 min at 37°C.

The specificity of cefpodoxime-proxetil esterase was studied in human and in rabbit duodenal washings by adding cefuroxime-axetil simultaneously to the cefpodoxime-proxetil at final concentrations in the range 0.01–1 mM.

The influence of the nutrients on cefpodoxime-proxetil hydrolysis was tested in the rabbit by adding elementary compound mixtures namely: amino acids, lipidic emulsions, vitamins and trace elements with a dilution factor from 1 (undiluted mixture) to 0.01. Injectable nutrients were selected for the in vitro study in order to study separately the impact of each class of nutrient on the hydrolysis of cefpodoxime-proxetil. The initial concentration (undiluted) of each mixture can be made to match the daily needs of proteins, lipids, vitamins and trace elements in humans. The dilution (0.1 and 0.01) of each mixture were performed in order to improve the concentration effect on the enzymatic activity.

2.2.4. Cholinesterase activity inhibition by cefpodoxime-proxetil

Acetylcholinesterase activity: acetylcholinesterase activity was measured at 37°C and pH 8 by the photometric method of Ellman et al., 1961. The reaction mixture contained 2.86 ml 0.1 M phosphate buffer pH 8, 0.10 ml 0.01 M DTNB, 20 μ l 0.075 M acetylthiocholine and 20 μ l acetylcholinesterase (7.5 U/ml). The blank consisted of a buffer, acetylcholinesterase and a DTNB solution. The reaction was started by addition of the substrate to the reaction mixture. Acetylcholinesterase activity was determined by measuring the change in absorbance at 412 nm for 10 min with a spectrophotometer (Spectronic 1201 Milton Roy, Bioblock Scientific, Illkirch, France).

Competition assay with cefpodoxime-proxetil: The reaction mixture contained 2.84 ml 0.1 M phosphate buffer pH 8, 0.10 ml 0.01 M DTNB, 20 μ l acetylcholinesterase (7.5 U/ml) and 20 μ l 0.5 mM cefpodoxime-proxetil, the solution was pre-incubated for 10 min at 37°C. The blank consisted of buffer, acetylcholinesterase, 0.5 mM cefpodoxime-proxetil and DTNB solution. The reaction was started by the addition of the substrate (20 μ l 0.075 M acetylthiocholine).

Acetylcholinesterase activity was determined by measuring the change in absorbance at 412 nm for 10 min with a spectrophotometer.

2.2.5. HPLC analysis of cefpodoxime

The enzymatic incubation media were diluted with a 2% trichloroacetic acid solution. The dilution was analyzed on an optimized system composed of a Supelcosil LC18 (250 mm \times 4.6 mm, 5 mm particulate size) column (Supelco, St Germain en Laye, France) and of a ternary mobile phase (acetate buffer 0.05 M pH 3.8–methanol–acetonitrile (87:10:3 v/v/v)). The flow rate was 1 ml/min. The separation was performed at ambient temperature and monitored at 235 nm. Linearity between and within day reproducibility were assessed. Interassay coefficients of variation were within the range 8.3–3.5% for cefpodoxime concentrations between 0.2 and 2 mM. The limit of quantification was 0.05 mM.

3. Results

In human duodenal washings we observe a significant hydrolysis of cefpodoxime-proxetil namely, 6.6 μ M after 30 min and 11.04 after 1 h. Cefpodoxime-proxetil esterase activity (CPEA) in human is respectively 1.02 nmol/ μ g per 30 min and 1.5 nmol/ μ g per 60 min. CPEA found in the human is lower than the CPEA found in the rabbit.

Thus, the hydrolysis of cefpodoxime-proxetil by duodenal washings was significantly activated in the temperature range 4–50°C whereas its spontaneous hydrolysis at pH 7 remained insignificant (Fig. 1) as was found previously in the rabbit.

The characterization of the esterase activity in the human was achieved using different inhibitors (Table 2). Luminal activity was inhibited by 100 μ M PMSF and by 100 μ M eserine. Moreover, a complete inhibition was achieved using 1 mM HgCl₂.

These results are in accordance with our previous results (Crauste-Manciet et al., 1997) found in the rabbit intestinal washing.

Competition experiments were run with the drug ester cefuroxime-axetil using human intestinal washings (Fig. 2). No significant competition with cefpodoxime-proxetil hydrolysis was observed both in the rabbit and the human.

Competition with nutrients in the rabbit: no inhibition has been found with the two lipids tested (LCT and mixed LCT/MCT) but potent inhibitions were found with amino acids, vitamins and mixed trace elements. The cefpodoxime-proxetil esterase specific activity decreased with amino acids, trace elements and vitamins and is clearly related to their concentration (Table 3). For all tested dilutions of these nutrient mixtures, the inhibition rate of cefpodoxime-proxetil hydrolysis in intestinal washings was always significant when compared with the control (Table 3). A significant inhibition rate with amino acids is shown in Table 3a, with trace elements in Table 3b and vitamins in Table 3c.

Specific acetylcholinesterase activity measured at 37°C and pH 8 by the change in absorbance at 412 nm for 10 min was inhibited by the cefpodoxime-proxetil solution. The ratio between ab-

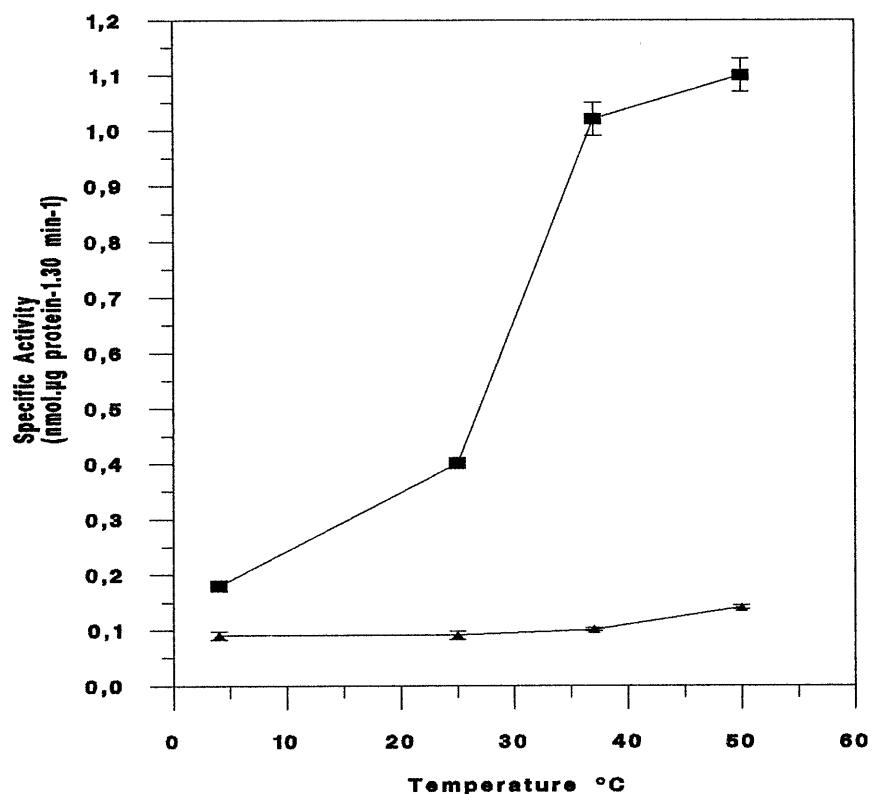


Fig. 1. Effect of temperature on the rate of hydrolysis of 100 μ M cefpodoxime-proxetil in human duodenal washings (■) or in 10 mM Hepes and 300 mM mannitol pH 7 alone (▼). The specific activity was calculated from the amount of free cefpodoxime released in the incubation medium, the amount of protein present in the reaction mixture being 5 μ g.

sorbance by minute and extinction factor of the DTNB anion was $3.65 \cdot 10^{-5} (\pm 0.03 \cdot 10^{-5})$ mol/l per min without cefpodoxime-proxetil and $1.84 \cdot 10^{-5} (\pm 0.1 \cdot 10^{-5})$ mol/l per min with cefpodoxime-proxetil. Results are mean \pm S.D. of 3 observations. The inhibition rate of the acetylcholinesterase activity was 50.4% which suggests competition with the acetylthiocholine substrate of the acetylcholinesterase.

4. Discussion

Cefpodoxime-proxetil esterase activity found in human duodenal washings is in agreement with our previous results found in the rabbit (Crauste-Manciet et al., 1997). Hydrolysis is clearly related to an enzymatic activity since no spontaneous hydrolysis

of the prodrug, even at temperatures as high as 50°C, was observed. Whereas, on the other hand, intestinal washing deesterification was clearly activated by increasing the temperature in the range 4–50°C.

Cefpodoxime-proxetil esterase activity was inhibited in the human both by PMSF and eserine, so that this activity can be classified as B-esterase according to Aldridge's classification (Aldridge, 1953) and a cholinesterase according to that of Walker and Mackness (Walker and Mackness, 1983).

Cholinesterases (ChEs) regroup acetylcholinesterases (AcChE, E.C. 3.1.1.7) and pseudocholinesterases or butyrylcholinesterases (BuChE, E.C. 3.1.1.8) can be distinguished from the other B-esterase (carboxylesterases) on the ground of their preference for choline esters and their inhibition by eserine (Walker, 1989).

Table 2

Distribution of cefpodoxime-proxetil esterase activity in human duodenal washings and the effect of esterase inhibitors: comparison of inhibition rates in the human and rabbit

Inhibitors	Specific activity in the human (nmol/μg protein per 30 min)	Specific activity inhibition rate in the human (%)	Specific activity inhibition rate in the rabbit (Crauste-Manciet et al., 1997) (%)
Control	1.02 ± 0.03	0	0
PMSF (100 μM)	0.28 ± 0.02*	72.5	67.7
Eserine (100 μM)	0.35 ± 0.02*	65.7	74
HgCl ₂ (1 mM)	0.07 ± 0.007*	93.1	100

Cefpodoxime esterase activity was measured from the release of free cefpodoxime in the incubation buffer (pH 7.0). The amount of protein in the reaction mixture was 5 μg and the final concentration of cefpodoxime-proxetil was 100 μM.

* Mean ± S.D. of 6 observations; *p* < 0.001 from paired controls.

Cholinesterases and carboxylesterases are known to hydrolyse xenobiotic esters as well as natural esters (Augustinsson, 1961; Walker, 1989).

Aliphatic esters are hydrolyzed by the two types of ChEs (La Du and Snady, 1971; Shinkula and Yalkowski, 1975). This is in agreement and explains the hydrolysis of the cefpodoxime ester (aliphatic ester) of cefpodoxime by the ChEs.

Conversely, direct activity of cefpodoxime-proxetil on AcChE was shown by the 50% decrease in AcChE activity when added to the reaction media. The cefpodoxime ester could act as a substrate of ChEs and be a competitor for the specific acetylthiocholine substrate used. It could also be a ChEs inhibitor and be consequently hydrolyzed by AcChE. ChEs inhibition was previously found by this method with itopride (Iwanaga et al., 1994).

The hydrolysis mechanism for bambuterol was recently explained. It is assumed that bambuterol inhibits the esterase (BuChE) simultaneously with hydrolysis (Ekholm and Konschin, 1994). In the case of the cefpodoxime ester, the same mechanism could be implicated, but needs further investigation to be confirmed.

In the case of cefuroxime-axetil, which exhibits some structural similarities to cefpodoxime-proxetil, it did not interact with the cefpodoxime-proxetil hydrolysis by ChEs. These results are in agreement with findings of a carboxylesterase in rat intestinal washings which hydrolyze the cefuroxime-axetil (Campbell et al., 1987). Thus, different kinds of enzymes (ChEs, carboxylesterase)

could be responsible for the hydrolysis of the same ester drug throughout the body. (Ali and Kaur, 1983; Billiar and Eik-Nes, 1965; Inoue et al., 1979b; La Du and Snady, 1971; Morikawa et al., 1979; Myers, 1982; White and Hope, 1984; Williams, 1985). All in all, our results found in the rabbit and also in the human seems to indicate that the enzyme involved in luminal washing hydrolysis of cefpodoxime-proxetil can be related to the ChEs group. This hydrolysis could partially explain the incomplete absorption of the prodrug ester because ChE hydrolysis released the parent acid, cefpodoxime, which cannot be absorbed by the intestinal wall. Moreover, the correlation found between animal and human results in vitro could be very useful for further prospective investigations of the potential risk of hydrolysis by esterase in the intestinal lumen of new prodrug esters.

Nutrient impact on cefpodoxime-proxetil hydrolysis in the rabbit is of interest in regard to the pharmacokinetic studies in the human. Pharmacokinetic studies performed in the human found an increase in the absorption when cefpodoxime-proxetil tablets were administered with food (Hughes et al., 1989; Borin and Forbes, 1995; Borin et al., 1995a,b). The main hypothesis for food impact was the reduced gastric emptying rate and the enhancement of drug dissolution. Our hypothesis is that the impact of food could also be related to the decrease in prodrug hydrolysis in the intestinal lumen by decreasing the rate of release of cefpodoxime free acid which cannot be absorbed by the intestinal wall.

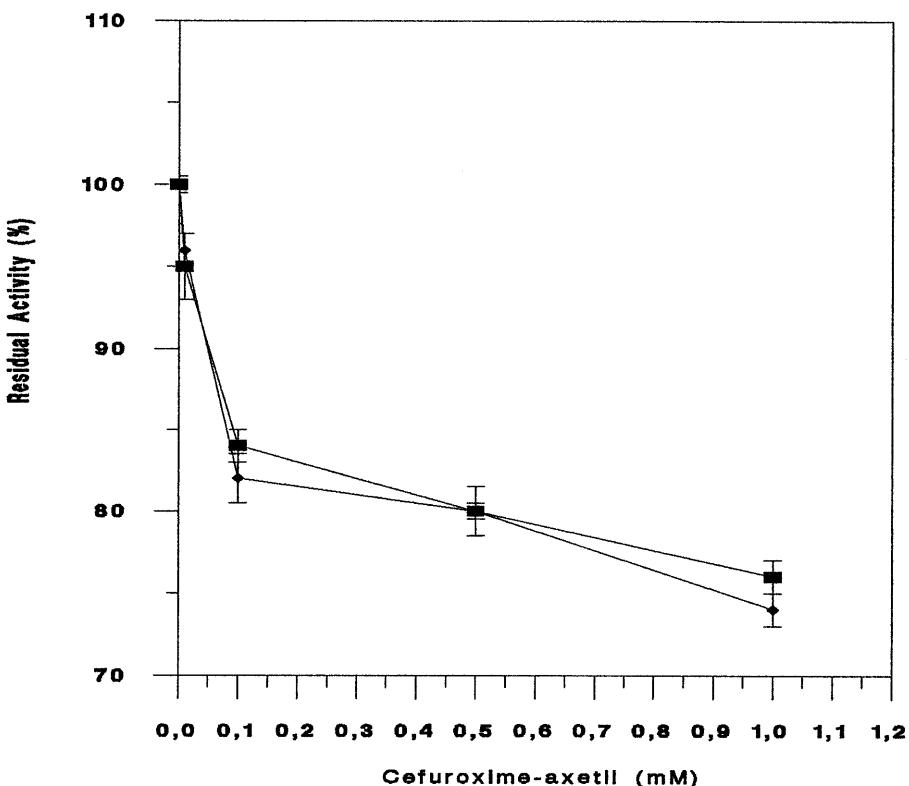


Fig. 2. Effect of cefuroxime-axetil competitor on the hydrolysis of cefpodoxime-proxetil in rabbit duodenal washings (■) and in human duodenal washings (◆). Cefuroxime-axetil was added at a concentration ranging from 0.01 to 1 mM to the reaction mixture together with 100 μ M cefpodoxime-proxetil. The residual activity is the ratio between the activity measured in the presence of cefuroxime-axetil and the activity measured without cefuroxime-axetil. Results are mean \pm S.D. of six observations.

This hypothesis can be supported by our investigation with the separate nutrients that we have tested. The lack of competition with cefpodoxime-proxetil hydrolysis involving lipids can be related to the fact that AcChEs did not hydrolyse triglycerides (La Du and Snady, 1971).

Otherwise, amino acids, trace elements and vitamins exhibit potent inhibition of the cefpodoxime-proxetil hydrolysis. This can be explained by the ChE inhibition mechanisms by cationic inhibitors (La Du and Snady, 1971).

Amino acid mixture esterase inhibition can be explained by the ChEs inhibition found with 3 amino acids, namely, glycine, L-glutamic acid and L-arginine (Bergmann et al., 1950). Both were present in the mixed amino acid solution used in our experiment and L-glutamic acid is the major amino acid in the Vamine® formulation.

The cefpodoxime-proxetil hydrolysis inhibition by trace elements can be related to the ChEs inhibition by several metal ions. Divalent ions inhibit ChEs activity more than monovalent ions. Zinc ions are inhibitors of the carboxylic acid group in the anionic active center of the ChEs. Cupric and nickel chelates of ethylene diamine were inhibitors of the ChEs through fixation of the metals on the enzyme and organoselenoates are irreversible ChEs inhibitors (Usdin, 1970). Co^{2+} , Cd^{2+} and Hg^{2+} were also recognized as inhibiting ChEs (Maruzek and Witkiewicz, 1995). Fluoride ion, NaF and NaCl strongly inhibit ChE enzymes. (Usdin, 1970; Martinval-maseda et al., 1995; Cimasoni, 1966).

Moreover, inhibition by vitamins can be related to the ChEs inhibition by thiamine and nicotinic acid (Stoytcheva and Zlatev, 1996).

Other antimicrobial prodrug esters display a similar pharmacokinetic profile in the presence of low gastric pH and food: cefetamet-pivoxil (Blouin et al., 1990; Tam et al., 1990) and cefuroxime-axetil (Sommers et al., 1984; Finn et al., 1987; Ginsburg et al., 1985).

As ChEs, the carboxylesterase involved in the cefuroxime-axetil hydrolysis could also be inhibited by some nutrient components.

All in all, our results corroborate the idea that nutrients could inhibit ChEs activity and have a protecting effect on cefpodoxime-proxetil hydrolysis in the intestinal lumen. Moreover, our results can explain only partially the *in vivo* findings for the impact of food components—better solubilization and reduced gastric emptying rate with food cannot be ruled out.

Table 3
Effect of nutrients on cefpodoxime-proxetil hydrolysis in the rabbit

Dilution factor	Specific activity (nmol/μg protein per 30 min)	Specific activity inhibition rate (%)
a. Amino acids mixture		
Control	4.15 ± 0.14	0
1 (undiluted)	0.39 ± 0.04*	90.6
0.5	1.44 ± 0.05*	65.3
0.1	3.15 ± 0.03*	24.1
0.01	3.73 ± 0.14*	10.1
b. Trace element mixture		
Control	4.15 ± 0.14	0
1 (undiluted)	0.28 ± 0.03*	93.3
0.5	0.52 ± 0.03*	87.5
0.1	1.21 ± 0.007*	70.9
0.01	3.15 ± 0.03*	24.1
c. Vitamin mixture		
Control	4.15 ± 0.14	0
1 (undiluted)	0.36 ± 0.07*	91.3
0.5	0.71 ± 0.07*	82.9
0.01	1.83 ± 0.07*	56.0

The different nutrient mixtures were added to the incubation medium with dilution factors 1 (undiluted) to 0.01 together with 100 μM cefpodoxime-proxetil. The specific activity inhibition rate is the difference between the residual activity measured in the presence of the nutrients (a, the amino acid mixture; b, the trace element mixture; c, the vitamin mixture) and the residual activity without any nutrients (100%).

* Mean ± S.D. of 6 observations; $p < 0.001$ from paired controls.

The role of food for solubilizing the prodrug was expected, because the increase in extent of cefpodoxime-proxetil absorption is greatest for tablets (and within tablet doses, is higher for higher doses), followed by the suspension and then, the solution (Borin and Forbes, 1995).

Similar findings have been reported for syrup and tablet formulations of cefetamet-pivoxil. When cefetamet-pivoxil is taken with a meal, bioavailability is increased by 25 to 30% for tablets and only 12% for the syrup (Tam et al., 1990; Ducharme et al., 1993).

Thus, solubility and lumen hydrolysis are two factors to be considered for cefpodoxime-proxetil absorption and probably for other ester cephalosporin prodrugs.

The rabbit model could be useful for a prospective investigation of the hydrolysis risks or the impact of food on ester prodrugs.

In conclusion, cefpodoxime-proxetil is hydrolyzed in human intestinal washings by ChEs enzymes. These findings partially explain its incomplete absorption. ChEs inhibitors could decrease the hydrolysis in the intestinal lumen (i.e. amino acids, metal ions and all quaternary compounds in general). These results could be very useful in protecting this prodrug from enzymatic hydrolysis. To improve cefpodoxime-proxetil bioavailability, it is necessary to find a protective formulation both to increase solubility and decrease enzymatic attack by ChEs in intestinal washings.

References

- Aldridge, W.N., 1953. Serum esterase. 1. Two types of esterase (A and B) hydrolysing *p*-nitrophenyl acetate, propionate and butyrate, and a method for their determination. *Biochem. J.* 53, 110–117.
- Ali, B., Kaur, S., 1983. Mammalian tissue acetylsalicylic acid esterase: identification, distribution and discrimination from other esterase. *J. Pharmacol. Exp. Ther.* 226, 589–594.
- Augustinsson, K.B., 1961. Multiple forms of esterase in vertebrate blood plasma. *Ann. N.Y. Acad. Sci.* 94, 844–860.
- Bergmann, F., Wilson, I.B., Nachmansohn, D., 1950. Acetylcholinesterase. IX Structural features determining the inhibition by amino acids and related compounds. *J. Biol. Chem.* 186, 693–703.

Billiar, R.B., Eik-Nes, K.B., 1965. Use of cholinesterase for hydrolysis of steroid acetate. *Anal. Biochem.* 13, 11–18.

Blouin, R.A., Kneer, J., Ambros, R.J., Stoeckel, K., 1990. Influence of antiacid and ranitidine on the pharmacokinetics of oral cefetamet pivoxil. *Antimicrob. Agents Chemother.* 34, 1744–1748.

Borin, M.T., 1991. A review of the pharmacokinetics of cefpodoxime proxetil. *Drugs* 42, 13–21.

Borin, M.T., Forbes, K.K., 1995. Effect of food on absorption of cefpodoxime-proxetil oral suspension in adults. *Antimicrob. Agents Chemother.* 39, 273–275.

Borin, M.T., Forbes, K.K., Hughes, G.S., 1995a. The bioavailability of cefpodoxime-proxetil tablets relative to an oral solution. *Biopharm. Drug Dispos.* 16, 295–302.

Borin, M.T., Driver, M.A., Forbes, K.K., 1995b. Effect of timing of food on absorption of cefpodoxime-proxetil. *J. Clin. Pharmacol.* 35, 505–509.

Campbell, C.J., Chantrell, L.J., Eastmond, R., 1987. Purification and partial characterization of rat intestinal cefuroxime axetil esterase. *Biochem. Pharmacol.* 36, 2317–2324.

Cimasoni, G., 1966. Inhibition of cholinesterases by fluoride in vitro. *Biochem. J.* 99, 133–137.

Crauste-Manciet, S., Huneau, J.F., Decroix, M.O., Tome, D., Farinotti, R., Chaumeil, J.C., 1997. Cefpodoxime proxetil esterase activity in rabbit small intestine: a role in the partial cefpodoxime absorption. *Int. J. Pharm.* 149, 241–249.

Ducharme, M.P., Edwards, D.J., McNamara, P.J., Stoeckel, K., 1993. Bioavailability of syrup and tablet formulations of cefetamet pivoxil. *Antimicrob. Agents Chemother.* 37, 2706–2709.

Ekholm, M., Konschin, H., 1994. Semi-empirical molecular orbital calculations on bambuterol, an inhibitor of human butyrylcholinesterase. *J. Mol. Struct.* 314, 277–285.

Ellman, G. L., Courtney, K.D., Andres, V., Featherstone, R.M., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. *Biochem. Pharmacol.* 1, 88–95.

Finn, A., Straughn, A., Meyer, M., Chubb, J., 1987. Effect of dose and food on the bioavailability of cefuroxime axetil. *Biopharm. Drug Dispos.* 8, 519–526.

Ginsburg, C.M., McCracken, G.H., Petruska, M., Olson, K., 1985. Pharmacokinetics and bacterial activity of cefuroxime axetil. *Antimicrob. Agents Chemother.* 28, 504–507.

Hughes, G.S., Heald, D.L., Barker, K.B., et al., 1989. The effect of gastric pH and food on the pharmacokinetics of a new oral cephalosporin, cefpodoxime proxetil. *Clin. Pharmacol. Ther.* 46, 674–685.

Inoue, M., Morikawa, M., Tsuboi, M., Yamada, T., Sugiura, M., 1979a. Species difference and characterisation of intestinal esterase on the hydrolyzing activity of ester-type drugs. *Jpn. J. Pharmacol.* 29, 9–16.

Inoue, M., Morikawa, M., Tsuboi, M., Yamada, T., Sugiura, M., 1979b. Hydrolysis of ester-type drugs by the purified esterase from human intestinal mucosa. *Jpn. J. Pharmacol.* 29, 17–25.

Iwanaga, Y., Kimura, T., Miyashita, N., et al., 1994. Characterization of acetylcholinesterase-inhibition by itopride. *Jpn. J. Pharmacol.* 66, 317–322.

La Du, B.N., Snady, H., 1971. Esterase of human tissues. In: Brodie, B.B., Gilette, J.R. (Eds.), *Handbook of Experimental Pharmacology—Concepts in Biochemical Pharmacology*, 28, vol. 2. 1971, Springer, Berlin, pp. 477–499.

Martinvalmaseda, E.M., Sanchezague, J., Cabezas, J.A., Llanillo, M., 1995. Biochemical characterization of sheep platelet acetylcholinesterase after detergent solubilization. *Comp. Biochem. Physiol. B* 110, 91–101.

Maruzek, M., Witkiewicz, Z., 1995. The determination of trace quantities of organophosphorus warfare agents by enzymatic method in thin layer chromatography. *Chem. Anal.* 40, 531–542.

Morikawa, M., Inoue, M., Tsuboi, M., Sugiura, M., 1979. Studies on aspirin esterase of human serum. *Jpn. J. Pharmacol.* 29, 581–586.

Myers, C., 1982. Hydrolysis of methylprednisolone acetate by human serum cholinesterase. *Drug Metab. Dispos.* 10, 279–280.

Shinkula, A.A., Yalkowski, S.H., 1975. Rationale for design of biologically reversible drug derivatives: prodrugs. *J. Pharm. Sci.* 64, 181–210.

Sommers, D.E.K., VanWyk, M., Moncrieff, J., Shoeman, H.S., 1984. Influence of food and reduced gastric acidity on the bioavailability of bacampicillin and cefuroxime axetil. *Br. J. Clin. Pharmacol.* 18, 535–539.

Stoytcheva, M., Zlatev, R., 1996. Bioelectrocatalytical studies of the effect of some pharmaceuticals on the acetylcholinesterase activity. *Electroanalysis* 8, 676–679.

Tam, Y.K., Kneer, J., Dubach, U.C., Stoeckel, K., 1990. Effect of timing of food and fluid volume on cefetamet pivoxil absorption in healthy normal volunteers. *Antimicrob. Agents Chemother.* 34, 1556–1559.

Usdin, E., Reaction of cholinesterases with substrate inhibitors and reactivators. In: Karczmar, A.G. (Ed.), *International Encyclopedia of Pharmacology and Therapeutics. Anticholinesterase Agents*, 13, vol. 1. Pergamon Press, Oxford, 1970, pp. 47–354.

Walker, C.H., Mackness, M.I., 1983. Esterase: problems of identification and classification. *Biochem. Pharmacol.* 32, 3265–3269.

Walker, C.H., The development of an improved system of nomenclature and classification of esterase. In: Reiner, E., Aldridge, W.N., Hoskin, F.C.G. (Eds.), *Enzyme Hydrolysis Organophosphorus Compounds*. Ellis Horwood, Chichester, 1989, pp. 236–245.

White, K.N., Hope, D.B., 1984. Characterization of aspirin of guinea-pig liver cytoplasm. *Biochem. Biophys. Acta* 785, 132–137.

Williams, F.M., 1985. Clinical significance of esterase in man. *Clin. Pharmacokinetics* 10, 392–403.